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Abstract-A critical review is presented of the methods used to evaluate the thermohydraulic performance 
of rough surfaces. The fundamental importance of the roughness functions R(h+) and g(h+,Pr) is 
pointed out. Optimisation is discussed. The Hall transformation, which is used to relate measurements 
in annuli to circular tube or rod-bundle tlows, is re-examined and the implications of some approximations 

explained. A consistent approach for evaluating the performance of rough surfaces is suggested. 

NOMENCLATURE 

4 constant in log-law (E 2.5); 

b, characteristic width of roughness element; 

D, characteristic hydraulic diameter; 
g(h+, Pr), heat-transfer roughness function defined 

as a wall boundary condition for a 
temperature profile; 

h, characteristic height of roughness element; 

h+, roughness Reynolds number hu,/v; 

M, Mach number; 

P? characteristic pitch ofroughness elements; 

Pr, Prandtl number; 

R(h+), momentum-transfer roughness function 

defined as a wall boundary condition for 
a velocity profile; 

St, Stanton number; 

Stx, Stanton number multiplier (St divided by 

smooth wall St at same Reynolds 
number); 

t+ 
U 

dimensionless fluid temperature; 

dimensionless fluid velocity u/u,; 

u,, shear velocity ,/(~,,,/p); 
+ 

Y ) dimensionless distance from surface yuJv. 

Greek symbols 

1, friction factor; 

IX* friction factor multiplier (1 divided by 
smooth walli; at same Reynolds number); 

V, viscosity; 

P? density; 
‘5 w9 wall shear stress. 

1. INTRODUCTION 

THE PURPOSE of this report is to summarize, and 
hopefully to clarify, the present situation with regard to 
evaluating the thermohydraulic performance of rough 

surfaces. A need for a re-appraisal becomes clear when 

it is recognised how wide a range of different cor- 

relations is given in the literature [l]. These often give 

different performances even for similar roughnesses! In 

order to review the situation, we first point out how 
the performance of a rough surface is prescribed 

analytically in terms of the well-known roughness 
functions R(h’) and g(h+, Pr). These functions are 

fundamental in that they provide local boundary 

conditions for the flow field. Methods for measuring 

the roughness functions are discussed. Because most 
experiments on rough surfaces have been conducted 

using heated annuli, a critical look at the Hall 

transformation [2] is made. It is stressed that when 
this transformation is employed a temperature profile 

must be measured. Some commonly used simplifi- 

cations of the transformation are discussed and the 

implications of some approximations pointed out. 
Finally, a consistent approach to the problem of 

evaluating the performance of rough surfaces is 

suggested. 

2. THE ROUGHNESS FUNCTIONS R(h+) AND 
g(h+,Pr) AND THEIR SIGNIFICANCE 

Nikuradse [3] defined the momentum-transfer 

roughness function R(h+) and Dipprey and Sabersky 
[4] defined the heat-transfer roughness function 
g(h+, Pr). We retain the rather vague nomenclature [see 
equations (1) and (2)] for the roughness functions 
because this is how they are generally identified in the 
literature. These functions are the parameters which 
describe the thermohydraulic performance of a rough 
surface. To understand this we consider the fully- 
developed turbulent flow of a moderate Prandtl 
number (Pr) homogeneous fluid through a channel. It 
is a well-known practice [5] to divide the flow into two 
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Core flow 

FIG. 1. A smooth wall and the laminar sub-layer 
(L.S.L.). 

or more regions. Typically, for a smooth wall, these 
may be a laminar or viscous sub-layer and a turbulent 

outer region or core; Fig. 1. Each region is analysed 

separately and they are “matched” at their boundaries 
by having the same velocity or temperature at these 

boundaries. This division is a von Karman integral 
approach in the sense that velocity and temperature 

profiles in the regions are only approximate. Where 

the matching occurs the most important boundary 

conditions are satisfied, namely, equal velocity and 
temperatures but not necessarily equal gradients. 

In the case of a hydraulically rough surface, Fig. 2, 

a laminar sub-layer no longer exists, at least, not at 

Y+ 
Core flow 

-_ 

-;:I ._~!j 

I- R(h+) -I 
FIG. 2. A rough wall and its analytic representation 
in terms of roughness functions acting as boundary 

conditions to the core flow profiles. 

every point on the surface. The momentum- and heat- 
transfer characteristics of the surface are then con- 

trolled by the local separation and re-attachment of the 

flow at the roughness elements. To avoid considering 
these mechanisms roughness functions are defined. In 

essence, R(Ir’) is a dimensionless fluid velocity at the 

edge of a control volume enclosing the roughness 

elements. It accounts for the momentum losses caused 
by the roughness and provides a velocity boundary 

condition for the core flow velocity u+. The function 

y(h+. PI) is essentially a dimensionless temperature 

difference over the same control volume. Hence, it 
defines the heat-transfer capabilities of the rough 

surface and provides a temperature boundary condition 

for the core flow temperature t+. Both R and g are 
convenient mathematical functions having little 

physical significance. They replace the normally 

accepted wall boundary conditions, U+ = t+ = 0. 

g(h+, Pr) may also be considered as the inverse of 
either a local average heat-transfer coefficient or a wall 

Stanton number. Lewis [6, 71 reviews the definition of 
the roughness functions and summarizes their 

limitations. 

Strictly. for any rough surface, we should write 

! h h h 
R = R h’. ~ shape, T, M 

h’ i’ D’ (1) 

and 

i 

h h h 
y = g h+. -, -. -, shape. Pr. T. M 

f~ P D 
(2) 

where h+ is the well-known roughness Reynolds 
number, h. p and h are lengths which characterise the 
dimensions and distribution of the roughness elements, 
D is a hydraulic diameter and T and M are a 

characteristic temperature and Mach number, respec- 
tively. We consider an incompressible, constant 
property fluid. If h/D is small and if the fluid’s Prandtl 
number is of order unity or greater, the following 
experimentally verified and widely accepted [S] hypo- 

thesis may be postulated: 

i 

h h 
R=R h’.~- -.shape 

h’ P i 

and 

! h h 
9 = g h-. i. , shape, Pr 

P 

Equations (3) and (4) imply that the roughness functions 
are invariant with a change in the core flow geometry. 
This is a far-reaching simplification because it means 
that the surface characteristics can be separated from 
the core or outer flow region. If h/D is not small the 
simplification cannot be made. Then both R and g 
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lose their local character and some other analysis, 
which takes into account the acceleration of the flow 
for example, must be considered. 

With such a simplification the roughness functions 
may be determined in any experimental rig or wind 
tunnel. Since they are assumed invariant under a change 
in the core flow geometry they will provide the 
foundations, as boundary conditions, for the analytic 
solutions of the core or outer flow in any system. That 
is, once g(h+, Pr) and R(h+) are established for surfaces 
of interest, Stanton numbers (St), friction factors (1) 
etc. may be determined for any geometry-circular 
tube, annulus, rod-bundle-provided that eddy 
diffusivity information is available for the core or outer 
flow. The overall solution to a problem would then fall 
into the category of a mean-velocity-field-closure 
turbulence model for the core, matched to the 
boundary-value roughness functions. 

3. MEASUREMENT OF R(h+) AND g(h+,Pr) 

The common approach is to choose a roughness 
shape and to determine the roughness functions by 
measurement for a range of h/b, h/p and h+. We may 
separate the measurements into two types; integral or 
“bulk” methods [S] and local methods [8] which 
involve measuring velocity and temperature profiles. 
Bulk methods introduce uncertainties because some 
model for the core flow must be assumed. By 
subtracting the core flow solutions from the bulk 
measurements the roughness functions are determined. 
Local measurements, which provide values for R(h+) 

and g(h+, Pr) directly, are difficult to perform accurately 
in small test sections and introduce “origin” 
uncertainties [9]. 

For bulk measurements in circular tubes, the analysis 
is trivial and we obtain [6, 71 

and 

R(h+) = ,,/(8/4+AIn2h/D+3A/2 (5) 

g(h+,Pr) = R(h+)+(1/8St-l&/(1/8) (6) 

where A is constant (Z 2.5) 1 and St are the bulk 
measured quantities and, for example, the term 
Aln2h/D+ 3A/2 is the velocity-profile core flow 
“solution”. Various uncertainties have been omitted 
from equations (5) and (6), but these may be shown to 
be small for a circular tube. Because of the problems 
involved with manufacturing rough surfaces inside 
circular tubes, annuli, with the outer surfaces of the 
inner tubes roughened, have found widespread use. 
However, the flow in an annulus is a flow in a multiply 
connected region. That is, it has two independent 
boundary conditions for velocity and temperature at 

the inner and outer walls. If the outer surface is 
adiabatic and the inner wall heated, asymmetry is 
introduced into the problem and the velocity and 
temperature profiles are no longer similar. Quarmby 
and Anand [lo] describe a method for modelling the 
core flow in an asymmetric situation. They solve the 
momentum and energy equations using an eddy 
diffusivity model, they satisfy the relevant boundary 
conditions and incorporate the heat transferred across 
the zero shear surface. Although their analysis is for 
an annulus with smooth walls, its extension to rough 
walls is straightforward. This extension has been 
employed by Lawn [9]. Other workers (Wilkie [ll], 
for example) use approximate solutions to the core flow 
and Hall’s transformation. 

4. THE HALL TRANSFORMATION 

The Hall transformation [2] is employed to relate 
measurements in annuli, with roughened inner surfaces, 
to roughened circular tube or rod-bundle flows. Its 
usefulness arises from the fact that the flow in the 
neighbourhood of a rod in an infinite, widely-spaced, 
symmetric rod-bundleis similar to the flow in a circular 
tube. But rough surfaces are more easily machined in 
annuli. Since annuli measurements cannot be used 
directly, because of asymmetries, transformations are 
necessary. For an incompressible, constant property 
fluid, the energy equation is linear and the principle of 
superposition is valid. This is the basis for the Hall 
transformation, which circumvents the problem of 
solving analytically the differential equations for the 
core flow and temperature field in the annulus. In this 
transformation the influence of rough walls on the 
momentum and heat-transfer characteristics of the flow 
is incorporated directly into the integral quantities 
(1, St) and roughness functions are not considered. 
Hall introduces a transformed inner region of the 
annulus with the same inner wall boundary conditions 
and the same velocity profile as the untransformed 
case but he defines a new temperature profile which 
gives an adiabatic zero-shear surface. Then, the 
transformed integral quantities for the inner region will 
correspond to similar parameters for a circular tube 
with the same boundary conditions as those on the 
inner wall of the annulus. 

It must be clearly understood that, if the principle of 
superposition is to be used, one fundamental 
temperature distribution-the inner region profile of 
the annulus-must be known. Therefore if the Hall 
transformation is to be employed, to avoid solving the 
differential equations, this fundamental profile must 
always be measured. Approximate solutions to the core 
flow and temperature fields, based only upon bulk 
measurements, can lead to errors in the transformation. 
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5. APPROXIMATE SOLUTIONS TO THE CORE FLOW 
IN ANNULUS MEASUREMENTS 

Many empirical models (see Warburton and Pirie 

[12], for a review) have been proposed to approximate 
the roughness functions and the annulus core flow 

solutions needed for the Hall-transformed parameters. 

Maubach [ 131 applies an integral method to determine 

R(h+). This gives consistent (for the same roughness 
shape and at the same value of 11’. the values of R(h+) 

determined by Maubach are the same in an annulus and 

in a circular tube) results because, by definition, no nett 
momentum is transferred across the zero-shear surface. 

However, heat is transferred across this surface which 
leads to modelling problems for the energy equation. 

A problem with the approximations involved in the 
transformations is to assess their accuracy. This can 

be done when it is realised that the roughness functions 

R(h+) and g(h+, Pr) re-calculated [15] from the trans- 
formed annulus information should be the same as the 

circular tube functions for similar roughness shapes and 

at the same values of h+. It was the discrepancies here 
[ 161 which led to the present re-appraisal. 

It is clear that, because the roughness functions are 

intimately connected with the velocity and temperature 

profiles in the flow field, transformations, such as Hall’s, 
which rely upon the energy integral equation, must have 

(i) the values of R(h+) and g(h’. Pr). and (ii) the solution 

of the core flow velocity and temperature field with the 

Circular tube “Correctly” 

St. X measured P transformed 

or eqllatlons - . st.stx 

(5) and 161 x. xx 

Comparison 
“best” or 
optimum 

roughness 

fuktions 
R( h+) 

g(h+,Pr) 

I 
Roughness Annulus core Annulus St. h 

flow 501” of 
P M measured or r-i-; HalI 

PIUS dlff egUatl0nS _ - ored,c+ed tl transform ! 
PI I (iboxltbpx4) ( ; PI I 

measurements 

4 I Eq L--_-A 
P-PredIction 
M-Measurement 

FIG. 3. A consistent approach to evaluating the thermohydraulic performance of a rough 
surface for an incompressible constant-property fluid. 

The empirical expressions used to prescribe the core- 

temperature boundary conditions [i.e. g(h’, Pr)] and 
to approximate the energy integrals of the core flow in 
the transforming equation are not evaluated by an 
independent measurement. Hence, three empirical 
quantities-the transformed Stanton number, the 
boundary conditions and the energy integrals-are 
being correlated by one measurement of bulk Stanton 
number. Furthermore, where an eddy diffusivity model 
is not employed, a modified Reynolds analogy is used 
to relate the energy integrals of the core flow to the 
friction factor. But, Reynolds analogy is not valid at 
or near the zero shear surface and will not account 
for energy transfer across this surface. An attempt by 
Kjellstrom [14] to model the roughness function 
g(h ‘,Pr) using a laminar sublayer concept and 
Reynolds analogy is conceptually not valid. 

correct boundary conditions, before the transformation 
can be effected! This essential information could be 
supplied if all of these quantities were measured but, 
such measurements would make transformations 
redundant [9]. Seen in this light, the fundamental 
arguments for Hall transformed quantities should be 
re-examined. 

6. A CONSISTENT APPROACH TO 
EVALUATING THE PERFORMANCE OF 

ROUGH SURFACES 

Once it is recognised that the roughness functions 
remaininvariant under a change of core flow geometry, 
a consistent approach to the analysis of such surfaces 
may be realised. The flow chart of Fig. 3 is presented 
to summarize this approach. 
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The first step (box 1) is to determine, experimentally 

or theoretically, the roughness functions R(h+) and 

g(h+,Pr) for a given roughness shape and distribution. 

If these functions are to be determined solely by 
experiment no consideration need be given to the 

mechanisms operating at the roughness elements. 
However, in order to optimise or make a proper choice 

of surface an almost unlimited number of experiments 

need to be performed, even for a uniformly distributed 
roughness. An attempt has been made [6, 71 to 

prescribe the local separated flow over the roughness 

elements, to analyse this flow and predict the roughness 
functions (box 10). Changes of shape and the 

distribution of the elements are considered in the 

analysis. Such an analysis may be used as a preliminary 
guide to determine which surfaces are of greatest 

interest. Experiments may then be employed to qualify 

the predictions. 
The roughness functions may be determined from 

bulk measurements (box 2) in circular tubes plus 

equations (5) and (6). On the other hand, local or 

direct measurements (box 10) may be made. If bulk 
measurements in annuli are performed (box 5), the 

eddy diffusivity model (box 4) should be used for the 

annulus core-flow solution. It is unwise to calculate the 

function g(h+, Pr) from transformed integral quantities 

and equations (5) and (6) because the function will 
contain errors introduced by the transformation. 

Once the roughness functions have been determined 

they may be directly compared (box 1). Alternatively, 
equations (5) and (6) may be employed together with 

the known roughness functions to compare circular 

tube Stanton numbers and friction factors (box 2) at a 
fixed h/D and channel Reynolds number. An optimum 

roughness (box 3) may be evaluated through either of 

these procedures. The circular tube bulk quantities 
(box 2) or their multipliers Stx and Ix, may be 

considered as “correctly” transformed parameters (box 
6) for use in slug-flow rod bundle codes (box 7) for 
example. 

Alternatively. the roughness functions could be used 

as boundary conditions for rod-bundle [17] core-flow 
solutions (box 8) to provide overall rod-bundle 

information (box 9). No extra information is added by 
employing Hall transformed quantities, shown by the 
dashed lines. 
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FONCTIONS DE RUGOSITE, PERFORMANCES THERMIQUES ET DYNAMIQUES 
DES SURFACES RUGUEUSES ET TRANSFORMATION DE HALL- 

VUE D’ENSEMBLE 

RCsumk-On presente une analyse critique des methodes d’ivolution des performances thermiques et 

dynamiques des surfaces rugueuses. On met en evidence I’importance fondamentale des fonctions de 
rugositi R(h+) et g(h+, Pr). On discute de I’optimisation. La transformation de Hall, utilisie pour relier 
les mesures dans I’espace annulaire aux tcoulements dans un tube circulaire ou une grappe de barres, est 
examinee et on explique les implications de quelques approximations. On suggere une approche positive 

pour evaluer les performances des surfaces rugueuses. 

RAUHIGKEITSFUNKTIONEN, DIE THERMOHYDRAULISCHEN EIGENSCHAFTEN 
RAUHER ~BERFLACHEN UND DIE HALL-TRANSFORMATION-EIN VJBERBLICK 

Zusammenfassung-In einer kritischen Ubersicht werden die Methoden zur Ermittlung des Warmeiiber- 
gangs und des Striimungsverhaltens an rauhen Oberfllchen gegeniibergestellt. Es wird auf die grundlegende 
Bedeutung der Rauhigkeitsfunktionen R (/I*) und g(h*, Pr) hingewiesen. Moglichkeiten der optimalen 
Auslegung werden diskutiert. Die Hall-Transformation, die angewendet wird. urn Ergebnisse fur den 
Ringspalt zu Messungen mit Kreisrohren und Stabbiindeln in Beziehung zu setzen, wird nachgeprtift 
und die Bedeutung einiger Annahmen aufgezeigt. Zur Berechnung der thermohydraulischen Vorgange 

wird ein Nlherungsverfahren vorgeschlagen. 

I-IAPAMETPbI BIEPOXOBATOCTM, TEI-LJIOBAII M I-WAPABJIAYECKA5I 
XAPAKTEPHCTHKII BIEPOXOBATBIX FIOBEPXHOCTE@ ITPEOEPA30BAHHE XO.JLJIA 
Atnso~atrt~n - npH~0jl1iTCB ICpBTB%!CKBfi 0630~ MeTOIIOB OnpeneneHuR TeUJrOBOti H r&UTpaBjUiBeCKOti 

XapaKTepBCTHK UtepOXOBaTbtX nOBepXHOCTet. OTMe’B3eTCB $tyHAaMeHTBJrbHOe 3HaVeHIie tTapaMeTpOB 

IUepOXOBaTOCTU R(h+) H g(h+, pr). PaCCMaTpBBaIoTCn OtTTHMaJrbHbIe XapaKTepHCTHKB. A~artU3ri- 

pyCTCX lTpBMeHeHBe npeO6pa30BaHHs XOnna ,mUl KOnbUeBOTO KaHaJra K CJ&“UGO TeKeHHIl B KpyTBOft 

Tpy6e Bmi rtynrax ~py6, B .Ita&TCB o60cHoBaHue HeKOTOpbIX npu6nUxeUuti. npe~BraeTCB paUeo- 

HaJlbHbIfi lTOnXOA Ltnfl OUeHKB XapaKTepHCTBKB IUepOXOBaTbIX l-tOBepXHOCTei. 


